USEFUL NUCLEAR DERIVATIONS

A.1 The semi-empirical mass formula
The mass of a nucleus defined by A and Z is given by
M(A,Z) = Z my + (A —Z) m, — B(A, Z)/c?, (A.1)

where B(A, Z) is the binding energy of the nucleus.
The semi-empirical mass formula, based on the liquid drop model, considers five contribu-
tions to the binding energy:

1. The volume term ay A. Since the nuclear force is saturated, each nucleon contributes about
16 MeV to the binding of the nucleus.

2. The surface term, which gives the reduction in binding resulting from the reduced binding
at the nuclear surface, —as A2/3.

3. The Coulomb term, which represents the Coulomb repulsion of the Z (Z — 1)/2 pairs of
protons in the nucleus. For a spherical nucleus of radius R = ryA!/? with the charge spread
evenly throughout the sphere the Coulomb energy is

For a general charge distribution not too different from the above, this can be parameterized
as —ac Z2 A713,

4. The asymmetry term, which accounts for the difference between proton and neutron num-

ber. If there were no Coulomb interaction between protons, one would expect, from sym-
metry arguments applied to a Fermi gas, to find equal numbers of protons and neutrons.
In order to generate the observed neutron excess (in most nuclei) we need to shift nucleons
from the "proton side" to the "neutron side" of these two Fermi gases. These neutrons can
only be added above the Fermi level, so energy must be put into the system. This is the
asymmetry energy which reduces the nuclear binding,.
The system is symmetrical about N = Z; the same energy would be required to shift nucle-
ons the other way if we require a proton excess. Thus to lowest order, one can expect the
energy to vary as (N — Z)?; in addition, the Fermi gas energy level spacing varies as 1/A so
that the asymmetry term is

_ (Aa-27y
A A .
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5. An empirical term to take into account the observed pairing of nuclei:

+09 Zand N even (A odd)
oA, Z) = 0 A odd
—09 Zand N odd (A odd)

In 1993 there were 342 stable nuclei in the mass compilation, 209 with even A, even Z; 70
with odd A, even Z; 59 with even A, odd Z and only 4 with odd A and Z (°H, °Li, 1°B, *N).
Clearly pairing enhances stability (or binding energy). This can also be seen, for instance,
in the neutron separation energies of neighboring isotopes, etc.

The binding energy is thus

A—227)?
B(A,Z) = ay A —as A*® — aAg

—ac 7> ATVB 1 50(A, Z). (A2)
The coefficients are determined by fitting to a suitably large data set of masses (hence semi-
empirical). A typical set is (all values in MeV):

12

ay =15.8, ay =18.3, ay =0.714, ay =23.2, Op = VYR (A.3)

A.2 The line of stability

Greater binding energy per nucleon implies greater stability. It is most convenient to explore this
in the context of a set of isobars.
The masses of the members of a set of isobars can be obtained by rearranging the semiem-

pirical mass formula A.1:
MA,Z)=aA-A,2)+BZ+yZ?,

where

a=my,c*—ay +ayu +a§1/3

B = (my —my)c®—4day —ac A7 .
y =ac A3 +4a,/A

This equation has the form of a parabola for fixed A; we can solve for the value of Z giving
the greatest binding energy (smallest mass), i.e. the most stable isobar. Thus

d
—M(A,Z) =
yields
76 = B _ A2+ (m, — m;lz)czA/SaA + acA2/3/8aA' (A4)
2y 1+ $(ac/as)A23
Inserting the values for the coefficients A.3 and rearranging,
A(1+0.0077 A7)
Zs = . (A.5)

2 +0.0154 A2/3

This then gives the equation for the "valley of stability" on the (N, Z) chart of nuclides. Note
that is determined by an interplay between the Coulomb force (makes Z a minimum) and the
asymmetry term (makes N = Z).

In Fig. A.1 the curve coming from Eq. A.6 is superimposed on the experimental valley of
stability. The agreement for the most frequent isotope is very good, with an error of maximum 1
proton (1 neutron).
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Figure A.1: The valley of stability. The red curve comes from Eq. A.6 and the background image
from HTTP://WWW.NNDC.BNL.GOV/NUDAT2/.

A.3 Coulomb barrier

The Coulomb barrier is the energy barrier resulting from electrostatic interaction that two nuclei
must overcome in order that they can approach closely enough to undergo nuclear fusion. The
Coulomb barrier is produced by electrostatic potential energy. In the fusion of light elements to
form heavier ones the positively charged nuclei must be forced close enough together to cause
them to fuse into a single heavier nucleus. The force between nuclei is repulsive until a very
small distance separates them, and then it rapidly becomes very attractive. Therefore, in order
to surmount the Coulomb barrier and bring the nuclei close together where the strong attractive
forces operate, the kinetic energy of the particles must be as high as the top of the Coulomb
barrier.

The Coulomb electrostatic potential for two colliding nuclei at radius d could be expressed
as

1 Zl Z2€2

u(Zl/ ZZ) = 47'C€0 d ’

(A.6)

where €y = 8.85x 10712 C2N'm?2 and e = 1.60 x 10~ C.

The nuclear radius is conventionally set to 7(A) = rpA'/® with ry = 1.44x 107 m. In principle
the Coulomb barrier could be overcome if the distance is lower than the sum of the nuclear radii
of the two nuclei. Therefore d = ro(Ai/ Sy Aé/ 3.

Substituting the previous expression in Eq. A.6 it results

VAVZ)

U(Z1, Z2)[MeV] = m,

(A7)

which is the minimum energy to overcome the barrier in the center-of-mass frame. To obtain the
lab frame expression on must multiply by the factor (A + A)/A; resulting

A+ A YAVA)
A1Ar AP 4 AP

U(Z1, Z>)[MeV/A] ~ (A.8)
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Figure A.2: Coulomb barrier for the most frequent isotopes appearing in the valley of stability.

Combining the previous expression with Eq. A.6 one can obtain the Coulomb barrier for the
most frequent isotopes appearing in the valley of stability, plotted in Fig. A.2.



