Thin Target effusion calculations using GEANT4

M.Barbui

Gen 24 2005

Introduction

- The simulation is performed using the GEANT4 toolkit (NIM A 506(2003),250-303).
- The isotopes of different mass (A) are simulated by alpha particles with the proper thermal energy.

$$E_{th} = 3/2(8.615*10^{-5}) T 4/A$$

 \triangleright The temperature is T = 2273 K.

Geometry

Container: Cylindrical tube (1 mm thick): radius 4 cm; length 24 cm

UCx Disks: radius 3 cm; 1 mm thick. Mass ~9 g; (ρ = 2.5 g/cm3)

Graphite Disks: radius 3 cm; 0.2 mm thick. (ρ = 1.75 g/cm3)

Graphite window: radius 4 cm, 0.4 mm thick.

Spacing Between disks: 2 cm

Exit cone length: 12 cm

Example

- The events originate with the thermal velocity in a random position in the region of the UCx disks.
- ➤ Isotopes considered: ¹³²Sn ⁹⁰Kr, ⁸¹Ga.
- ➤ When an ion strike the the walls of the container or the disks it is emitted in a random direction after the "sticking time"
- Several times the nuclei bounce on the disk surfaces. In a first approximation we assume for the disks the same sticking time of the walls.

Preliminary results

- 1000 events
- Average number of bounces: 5770

Ion (T _{1/2})	Effusion time without sticking
132 Sn ($t_{1/2} = 39.7 \text{ s}$)	(0.25 ± 0.25) s
90 Kr ($t_{1/2} = 32.3 \text{ s}$)	(0.21 ± 0.21) s
81 Ga $(t_{1/2} = 1.2 \text{ s})$	(0.20 ± 0.20) s

No sticking time data are available for the considered ions in Graphite or UC_2

Conclusions

- > GEANT4 allows to define complex geometries and to simulate the effusion process.
- The preliminary results indicate that the calculated effusion time for the considered ions is significantly lower than their half-life. This value is a lower limit to the real effusion time since the sticking time on UC_2 and graphite was neglected.
- \triangleright Sticking times on UC₂ and graphite should be measured and used for a more accurate calculation.
- > The present geometry can be modified to optimize the design of the target.